
d’Alembert solution of the wave equation.

Edwards and Penney have a typo in the d’Alembert solution (equations (37) and (39) on page 639 in
section 9.6). This is an easier way to derive the solution.

Suppose we have the wave equation
utt = a2uxx. (1)

And we wish to solve the equation (1) given the conditions

u(0, t) = u(L, t) = 0 for all t, (2)
u(x, 0) = f(x) 0 < x < L, (3)
ut(x, 0) = g(x) 0 < x < L. (4)

We will transform the equation into a simpler form where it can be solved by simple integration. We
change variables to ξ = x− at, η = x + at and we use the chain rule:
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Then

0 = a2uxx − utt = 4a2 ∂2u
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And therefore the wave equation (1) transforms into uξη = 0. It is easy to find the general solution to this
equation by integration twice. First suppose you integrate with respect to η and notice that the constant of
integration depends on ξ to get uξ = C(ξ). Now integrate with respect to ξ and notice that the constant of
integration must depend on η. Thus, u =

∫
C(ξ)dξ + B(η). The solution must then be of the following form

for some functions A and B.

u = A(ξ) + B(η) = A(x− at) + B(x + at).

We will need to solve for the given conditions. First let F (x) denote the odd extension of f(x) and G(x)
denote the odd extension of g(x). We let
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The solution is explicitly

u(x, t) =
1
2
F (x− at)− 1

2a

∫ x−at

0

G(s) ds +
1
2
F (x + at) +

1
2a

∫ x+at

0

G(s) ds

=
F (x− at) + F (x + at)

2
+

1
2a

∫ x+at

x−at

G(s) ds



Checking our work.

Let us check that this works. So
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So far so good. Assume for simplicity F is differentiable. By the fundamental theorem of calculus we have
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Yay! We’re smoking now. OK, now the boundary conditions. Note that F and G are odd. Also
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is an even function of x because G is odd (do the substitution s = −v to see that). So
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Now F and G are 2L periodic as well. Furthermore
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Notes

It is best to memorize the procedure rather than the formula itself. You should remember that a solution
to the wave equation is a superposition of two waves traveling at opposite directions. That is

u(x, t) = A(x− at) + B(x + at).

If you think about it, the formulas for A and B are then not hard to guess. Also note that when g(x) = 0
(and hence G(x) = 0) we have

u(x, t) =
F (x− at) + F (x + at)

2
Here is where the book got it wrong. If you let

H(x) =
∫ x

0

G(s)ds,

then assuming that F (x) = 0 the solution is

−H(x− at) + H(x + at)
2a

.

So by superposition we get a solution in the general case when neither f nor g are identically zero.

u(x, t) =
F (x− at) + F (x + at)

2
+
−H(x− at) + H(x + at)
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,

which is what the book was going for but it missed the minus sign.

Warning: Make sure you use the odd extensions F and G, when you have formulas for f and g. The
thing is, those formulas in general hold only for 0 < x < L, and are note equal to F and G for other x.


